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ABSTRACT

With the rapid development of the aerospace industry, the structure of airborne electronic equipment 
has become more complex, which to some extent increases the difficulty of fault detection and 
maintenance of airborne electronic equipment. Traditional manual fault diagnosis methods can no 
longer fully meet the diagnostic needs of airborne electronic equipment. Therefore, this chapter uses 
dynamic Bayesian network to diagnose the faults of airborne electronic equipment. The basic idea 
of using a dynamic Bayesian network-based fault diagnosis method for airborne electronic devices is 
to mine data based on historical fault data of airborne electronic devices, and obtain fault symptoms 
and training data of airborne electronic devices. For non-essential fault symptoms, rough set theory 
was introduced to reduce their attributes and obtain the simplest attribute set, thereby simplifying 
the network model.
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INTRoDUCTIoN

As an important technical system in the aviation industry, airborne electronic equipment is the 
core to ensuring the efficient and safe operation of aircraft and also the key factor to ensuring the 
normal operation of aviation flight. However, due to the complexity of the environment and working 
conditions, these devices are prone to failure, which poses a great threat to the safety and performance 
of the aircraft. Therefore, how to diagnose the fault of airborne electronic equipment quickly and 
accurately has become an important research direction in the aviation field. Fault diagnosis of airborne 
electronic equipment based on dynamic Bayesian networks has important research value and practical 
application significance, which is helpful to improving flight safety and equipment reliability.

The common methods of traditional on-board electronic equipment fault diagnosis mainly include 
fault code-based diagnosis, fault pattern recognition, and expert system diagnosis. Among them, fault 
code-based diagnosis is used to judge the specific cause of the fault through the fault code generated 
by the on-board electronic equipment. This method is simple and direct and is only applicable to 
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common types of faults. Failure mode recognition means to establish a failure mode library through 
long-term monitoring and data collection of on-board electronic equipment, so as to carry out diagnosis 
based on current failure modes. This method does recognize some complex faults but requires a large 
amount of data and model training. Expert system diagnosis is an inference-based diagnosis based on 
expert knowledge and rules, which matches fault phenomena with preset rules to infer fault causes 
and solutions. This method is more effective when the problem is complex and requires professional 
knowledge, but it requires the accumulation of fault libraries and manual knowledge modeling, which 
makes the diagnosis more difficult for ordinary engineers and operators. The above commonly used 
traditional airborne electronic equipment fault diagnosis methods all have certain limitations in the 
face of complex faults and data acquisition difficulties, so it is necessary to find new fault diagnosis 
methods to make up for the deficiencies that exist in traditional methods.

As a graphical network based on probabilistic reasoning, Bayesian networks have important 
research value in dealing with uncertain knowledge representation and problem reasoning and have 
been successfully applied in many fields. Dynamic Bayesian networks are able to flexibly deal with 
dynamic relationships between variables and are suitable for describing complex dynamic processes 
in the fault diagnosis of airborne electronic equipment. It is capable of modeling the state and faults 
of the equipment and can be dynamically updated based on real-time data, estimating the a posteriori 
probability of the cause of the fault through probabilistic reasoning and providing probabilistic 
explanations corresponding to the diagnostic results. Avoiding overly deterministic diagnostic results 
makes the diagnostic results more reliable. This can also continuously improve the accuracy and 
robustness of the model based on new fault data and train it with a large amount of historical data, 
so as to learn the fault patterns and fault characteristics from the data and better identify and predict 
faults. This is especially important when facing complex fault situations and frequent changes. The 
use of Dynamic Bayesian Network (DBN) for the diagnosis of airborne electronic equipment faults 
offers the advantages of flexibility, uncertainty modeling, fault prediction capability, and real-time 
performance and efficiency. These advantages make dynamic Bayesian networks an effective method 
to improving the accuracy and efficiency of airborne electronic equipment fault diagnosis.

RELATED woRK

With the development of industry, equipment is constantly being updated, becoming more intelligent, 
and performing excellently in helping humans carry out various personalized and professional 
activities. Therefore, many scholars are researching new fault diagnosis methods for different types 
of equipment (Sreedevi et al., 2022). Chen et al. (2019) proposed the use of the IQA (image quality 
assessment) method for mechanical equipment faults diagnosis, because IQA, as an indispensable 
technique in computer vision, is extensively applied to image classification and image clustering. In 
order to verify whether the new method is suitable for mechanical equipment fault diagnosis, this 
study achieved fault detection through a series of operations such as data acquisition, noise removal, 
and image classification. Numerous experiments have demonstrated the effectiveness and robustness 
of this method. Jiang et al. (2023) proposed a classification model based on integrated incremental 
learning for equipment fault diagnosis. The model first introduced an integrated incremental learning 
mechanism and imbalanced data processing technology to solve the problem of imbalanced feature 
extraction and classification of many new data under equipment status data as well as imbalanced 
sample categories. Zhang (2019) proposed the use of artificial intelligence (AI) technology for 
mechanical equipment fault diagnosis. Because traditional mechanical diagnostic technology cannot 
meet practical diagnostic requirements, AI technology has advantages in solving remote control, 
fault diagnosis, and nonlinear problems and can predict the remaining life of the entire equipment. 
The utilization of AI technology in mechanical equipment fault diagnosis is beneficial for improving 
equipment efficiency and reliability, reducing maintenance costs, and extending service life and can 
also point out the direction for the growth of mechanical fault diagnosis. Shi et al. (2021) proposed 
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the use of the support vector machine algorithm for railway electronic equipment fault diagnosis. The 
study first constructed an electronic signal equipment fault diagnosis model to reduce the impact of 
sample data imbalance on classification accuracy. It then analyzed a large number of unstructured text 
information about equipment failures recorded by natural language processing, extracted semantic 
features, and finally classified them. Research has shown that support vector machine algorithms can 
effectively achieve fault diagnosis of electronic signal equipment. Through the research of scholars 
mentioned above, it has been found that few have studied methods for fault diagnosis of airborne 
electronic equipment.

The Bayesian network technology is widely used in various fault diagnosis research studies, 
which has emerged in recent years. Diallo et al. (2018) applied the Bayesian network paradigm as 
a comprehensive data-driven diagnostic method for complex manufacturing industries, as Bayesian 
models can consider issues related to the surge in the number of variables and solve the problem of 
determining network parameters. The diagnostic program proposed using the developed Bayesian 
framework can provide structured data required for constructing and using diagnostic models and 
explain the purpose of data in terms of forward and backward traceability. Atoui and Cohen (2020) 
used Bayesian networks as a new method of fault detection and isolation, because Bayesian networks 
combine model-based and data-driven frameworks to detect and diagnose single, multiple, and 
unknown faults. Prior model knowledge and available data can also be utilized to provide a new 
perspective for detecting unknown faults, which is superior to other methods. Yu and Zhao (2019) 
proposed a probability set learning strategy based on Bayesian networks to alleviate the harmful 
effects of faults in complex systems, as Bayesian networks can integrate the advantages of different 
diagnostic models and accurately infer the cause of observable anomalies. In addition, Bayesian 
networks can effectively capture mixed fault features of multiple faults by integrating decisions 
from different diagnostic models. Yang et al. (2019) proposed a radial basis function feedforward 
neural network based on Bayesian decision theory for power transformer fault diagnosis. The radial 
basis function feedforward neural network optimized by the BA (Bat Algorithm) can significantly 
enhance the performance of fault diagnosis. Overall, Bayesian networks are suitable as methods for 
fault diagnosis.

Based on the above literature analysis, the innovation of this paper is the use of dynamic Bayesian 
networks to diagnose airborne electronic equipment faults and to obtain historical and training data on 
excavator electronic equipment faults, thus obtaining equipment-related fault symptoms. The rough set 
theory is then used to reduce the attributes of the non-essential fault symptoms, thus simplifying the 
model. Then the fault diagnosis network model is constructed on the basis of expert knowledge and the 
Bayesian neural network-based structural learning method, and the two models are fused and optimised 
by combining the correlation between fault symptoms. Finally, the constructed model is experimentally 
analysed by taking M airborne electronic equipment as an example to prove its feasibility.

CoMPoSITIoN AND FUNCTIoNS oF AIRBoRNE ELECTRoNIC EQUIPMENT

Airborne electronic equipment is the most important component of an aircraft. The use of onboard 
electronic devices can improve the safety and accuracy of aircraft operation (Liu et al., 2023). The 
use of airborne electronic devices can clearly obtain various information required for flight, such 
as meteorological conditions, terrain, air conditions, and ground building conditions, which is 
conducive to further ensuring the safe operation of the aircraft (Yu et al., 2023). Airborne electronic 
equipment refers to various types of radars installed on an aircraft, mainly divided into two parts: 
one is aviation instruments, and the other is aviation radio systems, as shown in Figure 1. Aviation 
instruments are mainly used to measure (or calculate) the flight parameters of aircraft as well as the 
operational parameters of engines and other devices. The aviation radio system is mainly used for 
aircraft communication and radio navigation.
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If there is a situation where the power indicator light constantly flashes “flickering”, the fault 
source can be locked in the power circuit section according to this situation (Feng et al., 2022). 
Figure 1 (b) is a part of the aviation communication, navigation, and surveillance radio system, which 
has a very important function of providing perception information to the driver at night or under 
low or zero visibility weather conditions such as rain, snow, and fog. Other important functions of 
airborne electronic devices are used to control and guide weapons, perform aerial surveillance and 
reconnaissance, and ensure accurate heading and flight safety. Airplanes cannot lack advanced onboard 
electronic equipment; otherwise they cannot achieve the comfort, safety, low cost, and reliability of 
aviation flight and cannot meet the requirements of modern warfare for military aircraft.

METHoDS FoR DIAGNoSING FAULTS IN 
AIRBoRNE ELECTRoNIC EQUIPMENT

Bayesian Network
The Bayesian network is a graphical probability method based on the Bayesian formula (Wang et al., 
2023). It is often utilized to address the issue of incomplete and uncertain information in the field of 
AI. The main elements of Bayesian network include the conditional probability table (CPT), network 
nodes, and directed arcs (Chen et al., 2023). The modeling of Bayesian networks mainly includes 
two aspects: structural learning and data learning.

The dynamic factors of system failure often appear in practice. If researchers cannot deal with 
these dynamic factors in time, it will result in the delay of the construction period, the increase of cost, 
and a low utilization of resources (Du et al., 2021). The advantages of applying Bayesian networks to 
analyze system faults include: firstly, it can reveal the internal relationship between fault phenomena 
and causes; secondly, it can quantitatively calculate the probability of occurrence of each fault cause. 
Compared to fault trees, Bayesian networks can be used to handle complex systems with dynamic 

Figure 1. Main components of airborne electronic equipment (Note. (a) Aviation instrumentation; (b) Aviation communication, 
navigation, and surveillance radio system; (a) shows the aviation instrument section.)
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and polymorphic problems, achieving fault diagnosis and fault component localization (Wang et 
al., 2018). Modifying the attribute layer weight algorithm using Bayesian network rules can obtain 
entropy weights that reflect the correlation of attribute layers (Hao et al., 2018).

The traditional dynamic fault tree calculation process is relatively complex and not suitable for 
computing large systems. It is necessary to undergo the transformation of a discrete-time Bayesian 
network and then redefine the initialization network and transfer network to compensate for the 
combinatorial space explosion caused by the large computational system (Qi et al., 2022). If a T event 
occu r s  w i t h in  t a sk  t ime  R ,  t he  occu r r ence  i n t e r va l  o f  T  mus t  be  w i t h in 
0 2 2 3 1, ) ), ) , )∆ ∆ ∆ ∆ ∆ ∆ ∆
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Diagnostic data processing uses a binary approach to discretise continuous values and then uses 
multinomial distributions for probability estimation of the discrete values to analyse and compare 
the performance of the fault diagnosis algorithms in terms of runtime and classification accuracy for 
different data sizes (Bagui et al., 2020).

Rough Set Theory
Rough set theory is a mathematical tool used to deal with uncertainty problems. Rough set theory 
initially deals with the imprecision, fuzziness, and uncertainty of data and is considered as an 
alternative to fuzzy set theory (Zhan et al., 2022). Compared to other algorithms, this algorithm 
does not require any prior knowledge (He et al., 2018). The internal knowledge of data itself can be 
directly utilized to analyze and process incomplete information and identify hidden knowledge. The 
rough set method can assign weights and knowledge to the extracted principal components.

In rough set theory, information systems are defined as quads (Y, S, Z, f). F (x, a) ∈ Z, where x 
∈ Y and a ∈ S. If S = T ∪ J, where t∪j =∅, the information system is called a decision system, where 
T is the set of conditional attributes and J is the set of decision attributes (Xu, 2023).

Rough set classifies elements in the set through equivalence relation. The same division is called 
Equivalence class, which can be used to simplify information (Zhang et al., 2023). For ∀ a ∈ B, B ⊂ 
S, x ∈ Y, y ∈ Y, if f x f y

a a( ) = ( )  is true, object x and y are equivalence relation to attribute B (also 
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called indiscernibility relations); that is, objects x and y cannot be distinguished according to the 
attributes in B, which is expressed as:

IND B x y x y Y Y a B( ) = ( ) ( ) ∈ × ∀ ∈ ( ) = ( ){ }, , , , f x f y
a a

 (4)

In Y, the set with equivalence relation is also called Equivalence class, including:

Y IND B x y x y IND B/ , ,( ) = ( ) ( ) ∈ ( ){ }  (5)

Among them, Y IND B/ ( )  corresponds to a partition of domain Y.

AIRBoRNE ELECTRoNIC EQUIPMENT FAULT 
DIAGNoSIS AND MoDEL CoNSTRUCTIoN

Common Faults and Diagnostic Processes of Airborne Electronic Equipment
Electronic device failure refers to the device being in an abnormal state, causing the corresponding 
function of the device to malfunction or the corresponding behavior to be outside the allowable range 
(Jia & Li, 2023). Fault diagnosis refers to the process of identifying the root cause of faults through 
certain processing methods, efficiently and accurately repairing or replacing equipment components, 
etc., to ensure the normal operation of the system.

Common faults of airborne electronic devices include: electromagnetic relay failure of airborne 
electronic devices and electromagnetic interference failure between airborne electronic devices. There 
are many reasons for the occurrence of electromagnetic relays:

1)  Product quality control technology

Electromagnetic relays mainly consist of components such as coils, steel strings, and electric 
shock; the quality of any of these components directly affects their working performance.

2)  Electromagnetic relay pollution and aging

During long-term operation of the equipment, various impurities and aging of components can 
cause electromagnetic relay failures. For example, the presence of debris at the contact point, or the 
generation of polymer on the surface of frictional electric shock, can lead to an increase in contact 
resistance, a decrease in the contact surface of the contact point, an increase in contact resistance, 
and the phenomenon of contact disconnection.

3)  Excessive voltage and current

The equipment is always in high current during operation. Long term high current causes the 
coil of the electromagnetic relay to melt due to heating, resulting in a short circuit in the circuit and 
affecting the normal operation of airborne electronic equipment.

4)  Inadequate sealing
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Damage to the sealing element directly leads to the entry of external impurities in the 
electromagnetic relay, thereby causing malfunction.

Secondly, there are many reasons for electromagnetic interference faults:

1)  Electromagnetic sensitivity

It depends on the characteristics of the electronic components used in the electronic device.

2)  Natural loss

Airborne electronic equipment generally has a long production cycle and service life. During daily 
use and storage, the performance of some electronic components is reduced due to environmental 
and time factors, resulting in a decrease in radiation interference resistance and overall interference 
resistance.

3)  wIncomplete design

At the beginning of the airborne electronic equipment design, the designers do not fully consider 
its electromagnetic compatibility, and the equipment can only operate normally when used alone or 
in a small amount. Once multiple electronic devices are used together, due to weak anti-interference 
ability, they are particularly prone to paralysis, which affects the normal operation of airborne 
electronic devices.

Usually, for faults in airborne electronic equipment, aviation staff can record the fault situation 
in the fault analysis file and summarize it into a fault data table. Firstly, various relevant information 
data contained in the fault data table are preprocessed to obtain corresponding training samples. 
Then, further information on the faults of electronic equipment carried by excavators is obtained, 
and rough set theory is introduced for attribute reduction. A Bayesian network fault diagnosis model 
is constructed, and finally, the fault results are output. The fault diagnosis flowchart of airborne 
electronic equipment is shown in Figure 2.

Figure 2. Flow chart of airborne electronic equipment fault diagnosis
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The direct cause of airborne electronic equipment failure is the minimum cut set failure. The 
minimum cut set can be regarded as the minimum unit for diagnosis one by one (Lei et al., 2021). 
Based on diagnostic importance, diagnostic ranking is carried out. The minimum cut set with the 
highest importance is the first to be diagnosed, and the probability formula of the minimum cut set 
is as follows:

DF Q MCS S
MCS nn

= ( )  (6)

Among them, MCS
n

 represents the n-th minimum cut set, and DF
MCSn

 represents the diagnostic 

importance of the n-th minimum cut set. Q MCS S
n

( )  represents the probability of failure of the n-th 
minimum cut set when the airborne electronic equipment fails.

The diagnostic ranking of the components depends on the diagnostic importance, with the highest 
importance being diagnosed first. The formula is as follows:

DF Q C S
C nn

= ( )  (7)

Among them, C
n

 represents the nth component, and DF
Cn

 represents the diagnostic importance 

of the nth component. Q C S
n

( )  represents the probability of the nth component failing when an 
airborne electronic device fails.

Data Mining for Airborne Electronic Equipment
Currently, the fault data of airborne electronic equipment is mainly described in natural language 
and lacks a unified structure. Therefore, the fault text information must be characterized and pre-
processed to extract the metadata that can reflect the characteristics of each fault. The extracted 
feature information is automatically assigned to folders for storing electronic text information using 
a system with enhanced Bayesian classification techniques (Choo et al., 2019). Based on the airborne 
electronic equipment fault data table, the types and cause nodes that can reflect the fault symptoms 
are extracted based on the frequency and importance of fault vocabulary in the fault text information, 
as shown in Tables 1 and 2.

Table 1. Fault cause node table

Number Node Name Number Node Name

M1 Input circuit board failure M11 Start pulse failure

M2 Output circuit board failure M12 13V power supply failure

M3 Program memory circuit board failure M13 Channel selection failure

M4 Data storage circuit board failure M14 Comparator failure itself

M5 Code - pressure circuit board failure M15 4V power supply failure

M6 Pulse circuit board failure M16 Pulse and frequency changer failure

M7 Matching circuit board failure M17 Register failure

M8 Modulator circuit board failure M18 Broken control signal wire

M9 Output pulse fault M19 Pitch angle control circuit board failure

M10 Mobile pulse fault M20 Pulse width modulation device failure
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Construction of Diagnosis Model Based on Bayesian Networks
Firstly, the Bayesian network toolbox is used to establish a Bayesian network model based on expert 
knowledge. Due to the complexity of current airborne electronic devices, in order to more accurately 
identify the relationship between equipment failure issues and their causes, expert knowledge 
alone cannot be relied upon. It should also use data mining methods to actively search for internal 
relationships between nodes in real data. Expert knowledge and data mining are combined for Bayesian 
network structure learning, and a structural learning network model based on Bayesian networks 
is constructed. Fusion rules are used to optimize expert knowledge network models and structural 
learning network models but eliminate correlations between nodes in the same layer during the fusion 
process. In order to output the optimized Bayesian network model for fault diagnosis, the inherent 
correlation characteristics between each type of fault symptom are utilized to explore the potential 
relationships between fault symptoms, and they are integrated into the Bayesian diagnostic network 
model to obtain a diagnostic model with symptom correlation.

The Bayesian fault diagnosis model is divided into three layers, namely the fault type layer, fault 
feature layer, and fault cause layer. The corresponding relationship between fault symptom nodes is 
illustrated in Table 3.

EXAMPLES oF FAULT DIAGNoSIS BAyESIAN NETwoRKS

Taking M airborne electronic equipment as an example, the connection tree algorithm was used to 
validate the fault diagnosis model constructed by Bayesian networks, and a piece of information from 
its fault text was selected for model experiments. The specific text information of this fault is: At 
14:30, Flight V flew from L Airport to Z Airport and stopped at An Airport due to equipment output 
pulse failure. After the first restart, the flight continued at 14:50. At 16:40, it arrived at B Airport 
and chose to temporarily stop due to output pulse failure. After the second restart, the flight continued 

Table 2. Table of fault types

Number Failure Type Number Failure Type

Y1 Signal processing related Y5 Communication failure

Y2 Conversion related Y6 Reboot circuit board failure

Y3 Matching related Y7 Common brake faults

Y4 Logic related Y8 Others

Table 3. Corresponding relationships of fault symptom nodes

Number Feature Words Number Feature Words

E1 Input circuit board failure E9 Start pulse failure

E2 Output circuit board failure E10 Output pulse fault

E3 Matching circuit board failure E11 Channel selection failure

E4 Data storage circuit board failure E12 Comparator failure itself

E5 4V power supply failure E13 Mobile pulse fault

E6 Pulse circuit board failure E14 Pulse and frequency changer failure

E7 Broken control signal wire E15 Register Failure

E8 Modulator circuit board failure E16 Pulse Width Modulation device failure
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at 19:50. From the above information, it can be found that the electronic devices of Flight V contain 
symptoms of malfunctions such as “grounded”, “output pulse failure”, and “restart”. This set of fault 
symptoms has been constructed, with a and b representing occurrence and non occurrence, respectively. 
Then, the fault symptom set is equal to a a a b b b b b b b b b b b b b b b b b, , , , , , , , , , , , , , , , , , ,{ } , so the posterior 
probability of fault diagnosis of the output model is shown in Figure 3.

When Flight V was diagnosed by the model with three fault symptom nodes of “ground”, “output 
pulse fault”, and “restart”, the most likely cause of the fault was M4 (data storage circuit board fault). 
Figure 3 described the posterior probability obtained by the model at the fault cause node M1-M20, of 
which M4 had the highest probability of failure, 0.8. It can be learned that the fault diagnosis results 
of the model are consistent with the fault probability, indicating the high accuracy of this model.

To further verify the diagnostic ability of the fault diagnosis model constructed by Bayesian 
networks, symptom correlation relationships were combined in the model. The correlation model with 
symptoms was set as T1, and the correlation model without symptoms was set as T2. The comparison 
of the posterior probability of fault diagnosis between the two models is shown in Figure 4.

It can be clearly concluded from Figure 4 that both T1 and T2 were diagnosed as M4 faults. The 
posterior probability of M4 fault cause nodes was relatively high. The M4 fault probability of T1 
was 0.9, greater than T2. This indicates that the diagnostic interference of other fault cause nodes on 
M4 has decreased, and it also indicates that a model of fault symptom correlation has been added, 
making the diagnostic results more practical.

Figure 3. Fault diagnosis posterior probability of output model

Figure 4. Posterior probability of failure in the symptom free correlation model
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Figure 5 reflects the diagnostic accuracy of the symptom free correlation model. Among them, 
the accuracy of T1 was above 0.8, and the subsequent probability of T2 was between 0.6 and 0.8. 
The overall accuracy of T1 was greater than that of T2, and the fluctuation in accuracy was small, 
indicating that the diagnostic model with symptom correlation has good diagnostic effect, relatively 
accurate results, and high reliability. It is suitable for fault diagnosis of different fault types proposed 
in the article.

Finally, T1 and T2 were used for fault diagnosis of the different types of faults proposed in this 
article, as shown in Table 4.

Table 4 shows the actual diagnosis times of different fault types and the accurate diagnosis times 
of the model after using T1 and T2. Among them, T1 had the closest accuracy in diagnosing and 
converting related, communication faults, and other types of faults to the actual diagnosis frequency, 
with a difference of 1. The accuracy of T2 in diagnosing communication fault types was closest to 
the actual number of diagnoses, with a difference of 4. T1 had more accurate diagnoses for different 
types than T2, which was very close to the actual number of diagnoses. T1 fully utilizes the advantages 

Figure 5. Diagnostic accuracy of the correlation model with and without symptoms

Table 4. Diagnostic accuracy of the correlation model with and without symptoms

Fault Type Number of diagnostic faults T1 T2

Signal processing related 67 61 57

Conversion related 84 83 78

Matching related 98 95 90

Logic related 43 40 37

Communication failure 32 31 28

Reboot circuit board failure 103 100 98

Common brake faults 56 51 50

Others 70 69 65
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of Bayesian networks and symptom correlation to accurately and quickly diagnose the specific fault 
causes of airborne electronic equipment, save diagnostic costs, and optimize the diagnostic process.

Based on the above experiments, this paper selected three existing and commonly used airborne 
electronic equipment fault diagnosis models, namely the support vector machine based fault diagnosis 
model, the genetic algorithm based fault diagnosis module, and the random forest based fault diagnosis 
mode, and compared them with the models constructed in the paper. The diagnostic accuracy of each 
model was recorded by computer, and the number of experiments was 10 times. The use of X1 to 
X4 refers successively to the fault diagnosis model based on the support vector machine, the fault 
diagnosis model based on genetic algorithm, the fault diagnosis model based on random forest, and 
the fault diagnosis model based on dynamic Bayes. The diagnosis results are shown in Table 5 below.

According to the data in Table 5, it can be found that the diagnostic accuracy of X1 ranges from 
0.57 to 0.77, that of X2 ranges from 0.51 to 0.79, that of X3 ranges from 0.51 to 0.75, and that of 
X4 ranges from 0.81 to 0.97.

Obviously, the fault diagnosis model based on dynamic Bayes has the highest diagnostic accuracy, 
which is above 0.8.

CoNCLUSIoN

With the continuous development of science and technology, the on-board electronic equipment on 
aircraft is becoming more and more complex, and the equipment number is also increasing, which 
makes the maintenance of on-board electronic equipment more difficult. Therefore, by analyzing the 
fault characteristics of airborne electronic equipment, this paper proposed a fault diagnosis method of 
airborne electronic equipment based on the Bayesian network. The fault diagnosis network model is 
constructed by using expert knowledge and structure learning based on the Bayesian neural network. 
Finally, the optimized model is analyzed experimentally. The results show that the posterior probability 
of the diagnosis model with symptom correlation is consistent with the actual diagnosis results. In 
terms of diagnostic accuracy, the diagnostic model with symptom association has the highest accuracy. 
In different types of fault diagnosis of M-type airborne electronic equipment, there is no significant 
difference between the diagnosis model with symptom correlation and the actual diagnosis frequency. 
The feasibility and effectiveness of the fault diagnosis model of airborne electronic equipment based 
on Bayesian network are verified by experiments. In short, future research can further optimize and 
improve the modeling methods of dynamic Bayesian networks and further improve the accuracy and 
real-time of fault diagnosis by using big data and machine learning algorithms.

Table 5. Diagnostic accuracy of each model

X1 X2 X3 X4

1 0.74 0.77 0.70 0.86

2 0.66 0.74 0.66 0.94

3 0.77 0.62 0.51 0.84

4 0.57 0.79 0.69 0.94

5 0.61 0.51 0.71 0.89

6 0.76 0.58 0.61 0.81

7 0.77 0.74 0.51 0.97

8 0.75 0.64 0.59 0.90

9 0.65 0.76 0.75 0.87

10 0.74 0.74 0.57 0.97
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